If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2-42=11a
We move all terms to the left:
a^2-42-(11a)=0
a = 1; b = -11; c = -42;
Δ = b2-4ac
Δ = -112-4·1·(-42)
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{289}=17$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-11)-17}{2*1}=\frac{-6}{2} =-3 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-11)+17}{2*1}=\frac{28}{2} =14 $
| -3x/8=-9/4 | | 9(3n+3)=6(3n+1)+2 | | 2*n=28 | | 9x+2Y=240 | | 936=(2x+4)*(x+6) | | x/5+8=-2 | | (24)(39)=(2x+4)(x+6) | | 4a^2=28+6a | | R+12r=-4 | | 6(x+3)+3(2x-4)=30 | | 11k^2-9k=4 | | 9x4=85 | | 2(x+4)-3(x=6)=1 | | (6x+2)+(10X-8)=90 | | 8=e/3+8 | | 0=e/3 | | 9-s=12 | | 5(x-3)-3(x-4)=5 | | v/4+7=11 | | y=X^2+18 | | 1/3^3x+5=9x-1 | | 129=24x-3 | | b=36/64 | | x-3-4=2 | | b=72/128 | | b=6/8 | | b=9/36 | | b=18/32 | | 8x+4x=6 | | 9y=24+5y | | 2-3y-14=0 | | 8v=18-v |